6 research outputs found

    Methodology to sustain common information spaces for research collaborations

    Get PDF
    Information and knowledge sharing collaborations are essential for scientific research and innovation. They provide opportunities to pool expertise and resources. They are required to draw on today’s wealth of data to address pressing societal challenges. Establishing effective collaborations depends on the alignment of intellectual and technical capital. In this thesis we investigate implications and influences of socio-technical aspects of research collaborations to identify methods of facilitating their formation and sustained success. We draw on our experience acquired in an international federated seismological context, and in a large research infrastructure for solid-Earth sciences. We recognise the centrality of the users and propose a strategy to sustain their engagement as actors participating in the collaboration. Our approach promotes and enables their active contribution in the construction and maintenance of Common Information Spaces (CISs). These are shaped by conceptual agreements that are captured and maintained to facilitate mutual understanding and to underpin their collaborative work. A user-driven approach shapes the evolution of a CIS based on the requirements of the communities involved in the collaboration. Active users’ engagement is pursued by partitioning concerns and by targeting their interests. For instance, application domain experts focus on scientific and conceptual aspects; data and information experts address knowledge representation issues; and architects and engineers build the infrastructure that populates the common space. We introduce a methodology to sustain CIS and a conceptual framework that has its foundations on a set of agreed Core Concepts forming a Canonical Core (CC). A representation of such a CC is also introduced that leverages and promotes reuse of existing standards: EPOS-DCAT-AP. The application of our methodology shows promising results with a good uptake and adoption by the targeted communities. This encourages us to continue applying and evaluating such a strategy in the future

    panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services

    No full text
    The GFZ German Research Centre for Geosciences is the national laboratory for Geosciences in Germany. As part of the Helmholtz Association, providing and maintaining large-scale scientific infrastructures are an essential part of GFZ activities. This includes the generation of significant volumes and numbers of research data, which subsequently become source materials for data publications. The development and maintenance of data systems is a key component of GFZ Data Services to support state-of-the-art research. A challenge lies not only in the diversity of scientific subjects and communities, but also in different types and manifestations of how data are managed by research groups and individual scientists. The data repository of GFZ Data Services provides a flexible IT infrastructure for data storage and publication, including minting of digital object identifiers (DOI). It was built as a modular system of several independent software components linked together through Application Programming Interfaces (APIs) provided by the eSciDoc framework. Principal application software are panMetaDocs for data management and DOIDB for logging and moderating data publications activities. Wherever possible, existing software solutions were integrated or adapted. A summary of our experiences made in operating this service is given. Data are described through comprehensive landing pages and supplementary documents, like journal articles or data reports, thus augmenting the scientific usability of the service

    panMetaDocs, eSciDoc, and DOIDB—An Infrastructure for the Curation and Publication of File-Based Datasets for GFZ Data Services

    No full text
    The GFZ German Research Centre for Geosciences is the national laboratory for Geosciences in Germany. As part of the Helmholtz Association, providing and maintaining large-scale scientific infrastructures are an essential part of GFZ activities. This includes the generation of significant volumes and numbers of research data, which subsequently become source materials for data publications. The development and maintenance of data systems is a key component of GFZ Data Services to support state-of-the-art research. A challenge lies not only in the diversity of scientific subjects and communities, but also in different types and manifestations of how data are managed by research groups and individual scientists. The data repository of GFZ Data Services provides a flexible IT infrastructure for data storage and publication, including minting of digital object identifiers (DOI). It was built as a modular system of several independent software components linked together through Application Programming Interfaces (APIs) provided by the eSciDoc framework. Principal application software are panMetaDocs for data management and DOIDB for logging and moderating data publications activities. Wherever possible, existing software solutions were integrated or adapted. A summary of our experiences made in operating this service is given. Data are described through comprehensive landing pages and supplementary documents, like journal articles or data reports, thus augmenting the scientific usability of the service

    Utilizing the International Geo Sample Number Concept in Continental Scientific Drilling During ICDP Expedition COSC-1

    No full text
    The International Geo Sample Number (IGSN) is a globally unique persistent identifier (PID) for physical samples that provides discovery functionality of digital sample descriptions via the internet. In this article we describe the implementation of a registration service for IGSNs of the Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences. This includes the adaption of the metadata schema developed within the context of the System for Earth Sample Registration (SESAR1) to better describe the complex sample hierarchy of drilling cores, core sections and samples of scientific drilling projects. Our case study is the COSC-1 expedition2 (Collisional Orogeny in the Scandinavian Caledonides) supported by the International Continental Scientific Drilling Program3 (ICDP). COSC-1 prompted for the first time in ICDP’s history to assign and register IGSNs during an on-going drilling campaign preserving the original parent-child relationship of the sample objects. IGSN-associated data and metadata are distributed and shared with the world wide community through novel web portals, one of which is currently evolving as part of ICDP’s collaborative efforts within the GFZ Potsdam and researchers from ICDP’s COSC clientele. Thus, COSC-1 can be considered as a ‘Prime-Example’ for ICDP projects to further improve the quality of scientific research output through a transparent process of producing and managing large quantities of data as they are normally acquired during a typical scientific drilling operation. The IGSN is an important new player in the general publication landscape that can be cited in scholarly literature and also cross-referenced in DOI-bearing scholarly and data publications

    EPOS-WP16 : A coherent and collaborative network of Solid Earth Multi-scale laboratories

    No full text
    infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited “final form” in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting research activities into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. Regarding the provision of physical access to laboratories the current situation is such that access to WP16’s laboratories is often based on professional relations, available budgets, shared interests and other constraints. In WP16 we aim at reducing the present diversity and non-transparency of access rules and replace ad-hoc procedures for access by a streamlined mechanisms, objective rules and a transparent policy. We work on procedures and mechanisms regulating application, negotiation, evaluation, feedback, selection, admission, approval, feasibility check, setting-up, use, monitoring and dismantling. In the end laboratories should each have a single point providing clear and transparent information on the facility itself, its services, access policy, data management policy and the legal terms and conditions for use of equipment. Through its role as an intermediary and information broker, EPOS will acquire a wealth of information from Research Infrastructures and users on the establishment of efficient collaboration agreements

    EPOS-WP16: A coherent and collaborative network of Solid Earth Multi-scale laboratories

    No full text
    infrastructures range from the nano- and micrometre levels (electron microscopy and micro-beam analysis) to the scale of experiments on centimetres-sized samples, and to analogue model experiments simulating the reservoir scale, the basin scale and the plate scale. The aim of WP16 is to provide two services by the year 2019: first, providing virtual access to data from laboratories (data service) and, second, providing physical access to laboratories (transnational access, TNA). Regarding the development of a data service, the current status is such that most data produced by the various laboratory centres and networks are available only in limited “final form” in publications, many data remain inaccessible and/or poorly preserved. Within EPOS the TCS Multi-scale laboratories is collecting and harmonizing available and emerging laboratory data on the properties and process controlling rock system behaviour at all relevant scales, in order to generate products accessible and interoperable through services for supporting research activities into Geo-resources and Geo-storage, Geo-hazards and Earth System Evolution. Regarding the provision of physical access to laboratories the current situation is such that access to WP16’s laboratories is often based on professional relations, available budgets, shared interests and other constraints. In WP16 we aim at reducing the present diversity and non-transparency of access rules and replace ad-hoc procedures for access by a streamlined mechanisms, objective rules and a transparent policy. We work on procedures and mechanisms regulating application, negotiation, evaluation, feedback, selection, admission, approval, feasibility check, setting-up, use, monitoring and dismantling. In the end laboratories should each have a single point providing clear and transparent information on the facility itself, its services, access policy, data management policy and the legal terms and conditions for use of equipment. Through its role as an intermediary and information broker, EPOS will acquire a wealth of information from Research Infrastructures and users on the establishment of efficient collaboration agreements
    corecore